
International Journal of Scientific & Engineering Research Volume 9, Issue 10, October-2018 1734
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Simulink: An Efficient Method for Solving

Differential Equations.
C. Mabenga

Abstract— In this paper, we present an efficient graphical method for solving differential equations known as Simulink. The method is fast, simple and
offers us the opportunity to spend more time exploring the behaviour of the solutions rather than in solving the differential equation as it is often the case
with analytical and numerical methods. The differential equation is represented by means of a model diagram which comprises of three sections namely:
the input, computational and output sections. A convenient approach in which the model diagram is drawn using the differential equation parameters
instead of their values is considered. Three approaches for drawing the computational section of the model diagram namely; the differential equation
approach, state-space approach and transfer function approach are studied. The steps followed starting from drawing the model diagram; simulation and
display of the solutions are outlined. Ways of creating simulation values in the MATLAB workspace for further use and analysis are discussed. As an
illustration, a mass-spring system equation driven by a sinusoidal force is solved using Simulink. Numerical results obtained are given.

 Index Terms— Differential Equations, Simulink, Model Diagram, Mass Spring System

 —————————— —————————

1 INTRODUCTION

Many real-world problems in the field of engineering and
science are modeled using differential equations (DEs).
Obtaining an analytical solution for many of these des is often
a difficult or even an impossible task. In some cases even if an
analytical solution exists, it is usually too complicated to
interpret or involve integrals that can be evaluated only using
numerical integration methods. It is in this sense that
numerical methods are often regarded as a powerful
alternative tool for solving DEs modeling practical problems
[1, 2, 3]. However, numerical methods usually require lots of
computations and function evaluations, thus time consuming.
Computers are often used to speed up the process, but they
require code writing and programming skills [2, 3]. In this
paper, we present an effective graphical method for solving
des called Simulink. Simulink which stands for SIMULATION
and Link is a very powerful, simple and fast method that uses
MATLAB as its computational engine [4, 5, 6]. Furthermore,
Simulink offers us the opportunity to spend more time
exploring the behaviour of the solutions rather than in solving
the de as it is often the case with analytical and numerical
methods [5]. In addition, Simulink requires no computation
and function evaluations form the user nor programming
skills and can solve all initial value problems of any order:
linear or nonlinear, homogeneous or inhomogeneous with
constant or variable coefficients. Simulink also offers a variety
of forcing functions such as sinusoidal, step, logarithmic,
exponential, wave functions and many others. In Simulink the
de is represented by means of a model diagram which
comprises mainly of

three sections namely; the input, computational and output
sections with solution is obtained by simulating the model
diagram over time. The model diagram is drawn using blocks
from the Simulink block libraries. A block is precisely seen as
a device that performs a specific task on the input to produce
an output [5, 6, 7]. Drawing a model diagram is simple, easy,
takes little time and requires no special skills. To be precise,
Simulink turns our computer into a laboratory for modeling
systems allowing us to draw models as we would with pencil
and paper [6]. Changes to DE's parameters values can be
made and the solution obtained in no time.

 In this paper, we consider a convenient approach in which the
model diagram is drawn using parameters instead of their
values. The model diagram is kept fixed once drawn and the
parameter values passed to it using a MATLAB file or
MATLAB prompt >>. Changes to parameter values are made
in the file instead of model blocks thus making studying the
behaviour of the solution as parameters are varied more
efficient.

2. SECTIONS OF A MODEL DIAGRAM

The three sections of the model diagram are such that the
input and output sections are for inputting source functions
and displaying simulated solutions, respectively. The
computational section is the main section of the model
diagram and this is where the DE is solved. A complete model
diagram is such that components of the three sections are
connected together by means of interconnections [5]. Blocks

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 10, October-2018 1735
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

for drawing a model diagram for solving DEs are obtained
from four main block libraries, namely; the sources, sinks,
continuous and Math Operations libraries. A block is precisely
seen as a device that performs a specific task on the input to
produce an output [5, 6, 7].

 The sources library comprises of blocks for signal generating
devices and source functions. Examples include the constant
(for inputting constants), step, sinusoidal, function blocks just
to mention a few. The sinks library comprises of blocks for
displaying simulated solutions. The four mainly used blocks
include the scope, To Workspace, To File and Out1 blocks. The
continuous library comprises of blocks used to compute the
solution of the DE. Three commonly used blocks are the
integrator, state-space and transfer function blocks. The Math
Operations library comprises of blocks used for computing
arithmetic operations. Examples include the product, sum,
quotient, difference, gain, trigonometric functions and math
function blocks such as powers, surds, exponential and
logarithmic functions [5, 7].

2.1 Drawing the Computational Section of a Model Diagram

We consider three approaches used for drawing the
computational section of a model diagram.

2.1.1 Using the Differential Equation Approach

This is the most commonly used and straightforward
approach in which the solution is obtained by integrating the
DE using integrator blocks. An integrator block is considered
as something that integrates the derivative of a signal to
recover the signal [5, 7]. The highest order derivative of the DE
is made the subject and the resulting equation is integrated to
obtain the solution. For an 𝑛𝑡ℎ order DE, 𝑛 integrator blocks
are needed. The first block integrates the 𝑛𝑡ℎ derivative to
obtain the 𝑛𝑡ℎ−1 derivative and so on with the last one
integrating the first order derivative to obtain the solution.
The major setback with this approach is that it is space
consuming and hence becomes inconvenient for higher order
DEs. Convenient approaches such as using the state-space and
transfer function of the DE are often preferred for higher order
DEs.

2.1.2 Using the State-Space Approach

In this approach, an 𝑛𝑡ℎ order DE is converted to a system of 𝑛
first order DEs having the matrix form

 � �̇� = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥 + 𝐷𝑢 .

� (1)

System (1) is referred to as the state-space form of the DE. The
first and second equations are called the state and output
equations, respectively. The vectors 𝑥, and 𝑦 are the state and
the output vectors, respectively. The matrices 𝐴,𝐵,𝐶, and 𝐷 are
called the state, input, output and transition (direct action
from input to output) matrices, respectively [7]. The
computational section of the model diagram is drawn using
the already available state-space block thus saving space [5].

2.1.3 Using the Transfer Function Approach

The DE is transformed into its transfer function form which is
the ratio of the Laplace transform of the forcing function over
the Laplace transform of the DE [5, 7]. It is given by 𝐻(𝑠) =

 𝑋(𝑠)
𝐹(𝑠)

 where 𝑋(𝑠), and 𝐹(𝑠) are the Laplace transforms of the DE

and forcing function, respectively. The computational section
is then drawn using the available transfer function block [5].

Like the state-space approach, the computational section is put
in one block thus saving space. The major setback with this
approach is that it only applies to zero initial conditions [5, 7].

 A schematic diagram for solving DEs in Simulink is given in
Figure 1

Figure 1. Simulink Schematic Diagram for solving a DE

3 STEPS FOLLOWED: SOLVING A DE IN SIMULINK

Steps followed when solving a DE in Simulink are generalized
as: Accessing Simulink, Drawing model diagram Simulating
model diagram, and Visualizing simulation results.

3.1 Step 1: Accessing Simulink

 • Open MATLAB.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 10, October-2018 1736
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

 • Open Simulink by double clicking on the Simulink icon on
the MATLAB menu. Alternatively, type Simulink at the
MATLAB prompt >> followed by Enter.

3.2 Step 2: Drawing the Model Diagram

• Decide on the approach to use to draw the computational
section and the output block(s) to use. This is done outside
Simulink.

 • Open a new model by double clicking on the new model
icon.

• Copy and drag all the required blocks from their respective
block libraries to the new model.

• Align and orient blocks for connection. Right click on the
block and use the flip block option from format to change the
block's orientation.

 • To connect two blocks left click and drag from the input port
of one block to the output port of another block or vice versa.
To connect a signal line to a block, left click on the block input
port and drag to the signal line. A solid black line with a bold
arrow at the end symbolizes connection success while a red
broken line implies connection failure.

• Reset block parameter values. The simulation start and stop
times, solver and its type can also be reset using Model
Configuration Parameters from simulation from the model
menu. The solver is the numerical method used to solve the
DE problem. Simulink has two types of solvers being the
fixed-step and variable-step. A fixed-step solver uses a
constant step size throughout the simulation time while a
variable-step solver varies the step size during simulation,
reducing the step size to increase accuracy when a model's
states are changing rapidly and increasing the step size to
avoid taking unnecessary steps when the model's states are
changing slowly [5]. By default, MATLAB versions such as
R2011b and earlier ones set the simulation start and stop times
as0, and 10 seconds, respectively and use the variable-step
solver𝑜𝑑𝑒45. Latest versions such as R2016a use the default
solver auto. Auto solver means that Simulink chooses a
suitable solver for the model and sets the step size to
maximum [5]. Other parameters such as the step size and
tolerance error can also be reset.

3.3 Step 3: Simulating the Model Diagram

The model diagram is saved first before simulation. Two file
formats .mdl, and .slx are used with the latter introduced in
MATLAB R2012a and is the default file format for MATLAB
R2012b and latest versions [5].

 • Save the model as 'model-name'.mdl or 'model-name'.slx.

• Simulate the model using the start simulation button in

 the model menu. The model can also be simulated using an
m-file or MATLAB prompt >> using the command
sim('model-name').

3.4 Step 4: Visualizing Simulation Results

The scope block is the commonly used block.

• For MATLAB R2011b and earlier versions, double click on
the scope block to produce a figure of simulation results. In
latest versions such as MATLAB 2016a, the scope block
produces simulation results figures automatically when the
model is simulated.

3.5 Creating Simulation Data in MATLAB Workspace

Often we wish to create simulation results in the MATLAB
workspace for further use and analysis. This can be done in
two ways. The first one is importing simulation data values
from the scope block. The second one is using other output
displaying blocks such as the To Workspace, To File and Out1
blocks. These blocks automatically create data values in the
workspace when the model is run. The created data values are
accessed using the MATLAB prompt >> or an m-file by the
command sim('model-name') [5].

3.5.1 Importing Data from the Scope Block

On the scope figure toolboxes select Parameters, followed by
Data History and save data to workspace. Edit the variable-
name (default variable name is ScopeData) and change save
format to Structure With Time for models saved using the
.mdl format. For models saved using the .slx format on the
scope figure toolbox select Configuration Properties followed
by Data Logging and log data to workspace [5]. The
simulation times and their corresponding solution values are
obtained using t = ScopeData.time and y = variable-
name.signals.values, respectively.

3.5.2 Using the To Workspace, To File and Out1 Blocks

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 10, October-2018 1737
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

The process of accessing simulation data created using the To
Workspace, To File and Out1 blocks for models saved using
the .mdl format is given in Table 1.

Block Changes on block
parameters

Output values

To
Workspace

•Edit variable name
(default variable name:
simout)

• y = variable-
name.signals.values

To File •Change file name
from untitled.mat to
name of m-file

•Change save format
to Timeseries

• y = simout

Out1 • None • y = yout

Table 1. Accessing simulation values for .mdl models

For models saved using the .slx format a similar process is
followed. For the To Workspace block, in addition we change
the save format of the block from Timeseries to Structure With
Time. For the To File and Out1 blocks the only change is that
the output is obtained using y = simout.signals.values and y =
yout.signals.values, respectively. The simulation times values
are obtained using t = tout for all the three blocks.

4 Solving the Mass Spring System Using Simulink

We consider a damped driven mass spring system given by
the second order linear constant coefficients differential
equation

𝑚𝑥 ̈(𝑡) + 𝑐 𝑥 ̇(𝑡) + 𝑘 𝑥(𝑡) = 𝐹(𝑡), 𝑥(0) = 𝑥_0, 𝑥 ̇(0) = 𝑣_0 (2)

 where 𝑚 is the mass, 𝑥(𝑡) the displacement, 𝑐 ≥ 0 the
damping constant, 𝑘 > 0 the spring constant, and 𝐹(𝑡) the
driving force.

4.1 Computational Section for the System

4.1.1 Using the Differential Equation Approach

Making the highest order derivative of the DE (2) the subject
we obtain �̈�(𝑡) = 1

𝑚
[𝐹(𝑡) − 𝑐�̇�(𝑡) − 𝑘𝑥(𝑡)].

Two integrator blocks are needed with the first one integrating
�̈�(𝑡) to obtain �̇�(𝑡) and the second one �̇�(𝑡) to obtain the
solution 𝑥(𝑡).

4.1.2 Using the State-Space Approach

The DE (2) has order two so we introduce two new
variables𝑥1, and𝑥2. Letting𝑥1 = 𝑥, 𝑥2 = �̇� and differentiating
with respect to time, 𝑡 gives the system of first order DEs

�
𝑥1̇ = �̇� = 𝑥2,

�̇�2 = �̈� =
1
𝑚

[𝐹(𝑡) − 𝑘𝑥1 − 𝑐𝑥2]
� (3)

having the matrix form

� 𝑥1 ̇
𝑥2̇

� = �
0 1

 −𝑘
𝑚

−𝑐
𝑚

� �
𝑥1
𝑥2 � + �

0
1
𝑚

 � 𝐹(𝑡) (4)

which simplifies to the state eqution �̇� = 𝐴𝑥 + 𝐵𝑢 with 𝑢 =
𝐹(𝑡). For the output equation given by 𝑦 = 𝐶𝑥 + 𝐷𝑢 we have
different matrices 𝐶 depending on the output desired. If the
output is the displacement, 𝑥, then 𝑦 = 𝑥1giving 𝐶 = [1 0]. If
the output is the velocity,�̇�, then 𝑦 = 𝑥2 giving 𝐶 = [0 1]. If
the output is both the displacement and velocity, the matrix

𝐶 is given by 𝐶 = �1 0
0 1�. We assume no direct action of the

input on the output and take matrix 𝐷 as zero.

4.1.3 Using the Transfer Function Approach

Taking the Laplace transforms of (2) both sides and using zero
initial conditions gives the transfer function as

𝐻(𝑠) =
𝑋(𝑠)
𝐹(𝑠)

=
1

𝑚𝑠2 + 𝑐𝑠 + 𝑘
 (5)

A model diagram for the system (2) with the computational
section drawn using the three approaches is given in Figure 2.

Figure 2: Model diagram of system (2)

The model diagram is drawn using parameters instead of their
values, saved as MassSpringModel.mdl and simulated using
an m-file with the solver ode23s. The file is given in Appendix

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 10, October-2018 1738
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

A. The scope and To Workspace blocks are used to display the
results with the latter having block parameters set as
described in Table 1.

5. NUMERICAL RESULTS

A mass spring system with parameter values:
𝑚 = 1 𝑘𝑔, 𝑘 = 3𝑁 𝑚⁄ , 𝑐 = 4𝑁𝑠 𝑚⁄ , 𝑥(0) = 0.5𝑚, �̇�(0) = 1 𝑚/𝑠
and 𝐹(𝑡) = 5 cos(2𝑡) is considered. Simulink does not have the
cosine function block so the sine function block is used with

the source function expressed as 𝐹(𝑡)5 sin �2𝑡 + 𝜋
2
�. The state-

space, transfer function and source function block parameters
are set as: in Figure 3.

Figure 3. Block Parameters for 𝑭(𝒕), state-space and transfer
function

 The results obtained by simulating the model are given in
Figure 4.

 Figure 4. Displacement, velocity and acceleration results

6. CONCLUSIONS

 In this work we have demonstrated that the model diagram of
a DE problem can be drawn using parameters and simulated

using an m-file with simulated results created in the MATLAB
workspace and plotted using the file. The Simulink method is
convenient as for the mass spring system the displacement,
velocity and acceleration results can be obtained at the same
time with ease. The acceleration results are only obtained by
using the DE approach while the transfer function approach
only gives the displacement. The results produced by the plot
command using the m-file are identical to those from the
model diagram scope block.

 APPENDIX A

The m-file used to simulate the model is given as:

REFERENCES
 [1] F. Kenmogne. Generalizing of Differential Transform Methods for
Solving Nonlinear Differential Equations, Journal of Applied and
Computational Mathematics, 4 (1) 2015.

 [2] M. K. Ring and N. A. Mody, Numerical and Statistical Methods for
Bioengineering: Application in MATLAB, Cambridge University Press, UK,
2011.

[3] K. Atkinson, W. Han and D. Stewart, Numerical Solutions of Ordinary
Differential Equations, John Wiley and Sons, Inc, New Jersey, USA, 2009.

[4] D. Xue and Y. Chen, Solving Applied Mathematical Problems With
MATLAB, Chapman and Hall/CRC, New York, USA, 2009.

 [5] MATLAB website: www.mathworks.com.

 [6] W. J. Palm III, Introduction to MATLAB for Engineers, Third Edition,
McGraw-Hill, New York, USA, 2011.

[7] E. M. Davis, Numerical Methods and Modeling for Chemical Engineers,
John Wiley and Sons, Inc, USA, 1984.

[8] B. R. Hunt, R. L Lipsman, J. E. Osborn and J. M. Rosenberg, Differential
Equations With MATLAB, Second Edition, John Wiley and Sons, Inc, USA,
2005.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research
Volume 9, Issue 10, October-2018
1739
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

IJSER

http://www.ijser.org/

	1 INTRODUCTION
	APPENDIX A
	References

